Colles de Maths - semaine 9 - MP-MP* Lycée Aux Lazaristes

Julien Allasia - ENS de Lyon

Algèbre générale

Exercice 1 Soit p un nombre premier.

1. Montrer que, pour tout $n \in \mathbb{N} \setminus \{0\}$,

$$u_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor.$$

2. Déterminer le nombre de 0 à la fin de l'écriture décimale de l'entier 100!.

Exercice 2 Quels sont les groupes qui possèdent un nombre fini de sous-groupes?

Exercice 3

- 1. Soit G un groupe fini tel que $\forall x \in E, x^2 = e$. Montrer que l'ordre de G est une puissance de 2.
- 2. En déduire que tout groupe d'ordre 2p avec p premier possède un élément d'ordre p.

Exercice 4

- 1. Soit G un groupe abélien fini. Montrer qu'il existe un élément de G dont l'ordre est le ppcm des ordres des éléments de G.
- 2. En déduire que si K est un corps, tout sous-groupe fini de K^* est cyclique.

Exercice 5 Soit K un corps et G un sous-groupe fini de K^* . Dénombrer l'ensemble des éléments de G d'ordre d pour tout d diviseur de |G|, et en déduire que G est cyclique.

Exercice 6 Soit G un groupe abélien fini et H un sous-groupe de G. Soit $\chi: H \to \mathbb{C}^*$ un morphisme de groupes. Montrer que χ se prolonge en un morphisme de groupe $\tilde{\chi}: G \to \mathbb{C}^*$.

Exercice 7 Soit A un anneau intègre fini. Montrer que A est un corps.

Exercice 8 Soit $d \in \mathbb{N}^*$. On pose

$$\Phi_d = \prod_{k \wedge d = 1} \left(X - e^{\frac{2ik\pi}{d}} \right).$$

1

Montrer que pour tout $d \in \mathbb{N}^*$, $\Phi_d \in \mathbb{Z}[X]$.

Intégrales impropres

Exercice 9 Etudier la convergence des intégrales suivantes :

$$1. \int_0^{+\infty} \cos(t^2) dt$$

$$2. \int_0^{+\infty} \frac{\cos t}{\sqrt{t} + \cos t} dt$$

Exercice 10 Soit $a, b \in \mathbb{R}_+^*$. Donner une condition nécessaire et suffisante sur a, b pour que l'intégrale suivante converge :

 $\int_0^{+\infty} \frac{\ln(1+x^a)}{x^b} \ dx.$

Exercice 11 Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telle que f et f'^2 sont intégrables. Etudier les limites de f en $+\infty$ et $-\infty$.